本教材由知了传课辛苦制作而成,仅供学习使用,请勿用于商业用途!如进行转载请务必注明出处!谢谢!

条形图

条形图的绘制方式跟折线图非常的类似,只不过是换成了plt.bar方法。plt.bar方法有以下常用参数:

  1. x:一个数组或者列表,代表需要绘制的条形图的x轴的坐标点。
  2. height:一个数组或者列表,代表需要绘制的条形图y轴的坐标点。
  3. width:每一个条形图的宽度,默认是0.8的宽度。
  4. bottomy轴的基线,默认是0,也就是距离底部为0.
  5. align:对齐方式,默认是center,也就是跟指定的x坐标居中对齐,还有为edge,靠边对齐,具体靠右边还是靠左边,看width的正负。
  6. color:条形图的颜色。

返回值为BarContainer,是一个存储了条形图的容器,而条形图实际上的类型是matplotlib.patches.Rectangle对象。

更多参考:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.bar.html#matplotlib.pyplot.bar

一、条形图的绘制:

比如现在有2019年贺岁片票房的数据(数据来源:https://piaofang.maoyan.com/dashboard):

#票房单位亿元 movies = { "流浪地球":40.78, "飞驰人生":15.77, "疯狂的外星人":20.83, "新喜剧之王":6.10, "廉政风云":1.10, "神探蒲松龄":1.49, "小猪佩奇过大年":1.22, "熊出没·原始时代":6.71 }

用条形图绘制每部电影及其票房的代码如下:

movies = { "流浪地球":40.78, "飞驰人生":15.77, "疯狂的外星人":20.83, "新喜剧之王":6.10, "廉政风云":1.10, "神探蒲松龄":1.49, "小猪佩奇过大年":1.22, "熊出没·原始时代":6.71 } plt.bar(np.arange(len(movies)),list(movies.keys())) plt.xticks(np.arange(len(movies)),list(movies.keys()),fontproperties=font) plt.grid()

效果图如下:
电影条形图.png

其中xticksyticks的用法跟之前的折线图一样。这里新出现的方法是barbar常用的有3个参数,分别是x(x轴的坐标点),y(y轴的坐标点)以及width(条形的宽度)。

二、横向条形图:

横向条形图需要使用plt.barh这个方法跟bar非常的类似,只不过把方向进行旋转。参数跟bar类似,但也有区别。如下:

  1. y:数组或列表,代表需要绘制的条形图在y轴上的坐标点。
  2. width:数组或列表,代表需要绘制的条形图在x轴上的值(也就是长度)。
  3. height:条形图的高度,默认是0.8。
  4. left:条形图的基线,也就是距离y轴的距离。
  5. 其他参数跟bar一样。

返回值也是BarContainer容器对象。

还是以以上数据为例,将电影名和票房反转一下。示例代码如下:

movies = { "流浪地球":40.78, "飞驰人生":15.77, "疯狂的外星人":20.83, "新喜剧之王":6.10, "廉政风云":1.10, "神探蒲松龄":1.49, "小猪佩奇过大年":1.22, "熊出没·原始时代":6.71 } plt.barh(np.arange(len(movies)),list(movies.values())) plt.yticks(np.arange(len(movies)),list(movies.keys()),fontproperties=font) plt.grid()

效果图如下:
电影横向条形图.png

三、分组条形图:

现在有一组数据,是2019年春节贺岁片前五天的电影票房记录。
示例代码如下:

movies = { "流浪地球":[2.01,4.59,7.99,11.83,16], "飞驰人生":[3.19,5.08,6.73,8.10,9.35], "疯狂的外星人":[4.07,6.92,9.30,11.29,13.03], "新喜剧之王":[2.72,3.79,4.45,4.83,5.11], "廉政风云":[0.56,0.74,0.83,0.88,0.92], "神探蒲松龄":[0.66,0.95,1.10,1.17,1.23], "小猪佩奇过大年":[0.58,0.81,0.94,1.01,1.07], "熊出没·原始时代":[1.13,1.96,2.73,3.42,4.05] } plt.figure(figsize=(20,8)) width = 0.75 bin_width = width/5 movie_pd = pd.DataFrame(movies) ind = np.arange(0,len(movies)) # 第一种方案 # first_day = movie_pd.iloc[0] # plt.bar(ind-bin_width*2,first_day,width=bin_width,label='第一天') # second_day = movie_pd.iloc[1] # plt.bar(ind-bin_width,second_day,width=bin_width,label='第二天') # third_day = movie_pd.iloc[2] # plt.bar(ind,third_day,width=bin_width,label='第三天') # four_day = movie_pd.iloc[3] # plt.bar(ind+bin_width,four_day,width=bin_width,label='第四天') # five_day = movie_pd.iloc[4] # plt.bar(ind+bin_width*2,five_day,width=bin_width,label='第五天') # 第二种方案 for index in movie_pd.index: day_tickets = movie_pd.iloc[index] xs = ind-(bin_width*(2-index)) plt.bar(xs,day_tickets,width=bin_width,label="第%d天"%(index+1)) for ticket,x in zip(day_tickets,xs): plt.annotate(ticket,xy=(x,ticket),xytext=(x-0.1,ticket+0.1)) # 设置图例 plt.legend(prop=font) plt.ylabel("单位:亿",fontproperties=font) plt.title("春节前5天电影票房记录",fontproperties=font) # 设置x轴的坐标 plt.xticks(ind,movie_pd.columns,fontproperties=font) plt.xlim plt.grid(True) plt.show()

示例图如下:
分组条形图.png

四、堆叠条形图:

堆叠条形图,是将一组相关的条形图堆叠在一起进行比较的条形图。比如以下案例:

menMeans = (20, 35, 30, 35, 27) womenMeans = (25, 32, 34, 20, 25) groupNames = ('G1','G2','G3','G4','G5') xs = np.arange(len(menMeans)) plt.bar(xs,menMeans) plt.bar(xs,womenMeans,bottom=menMeans) plt.xticks(xs,groupNames) plt.show()

效果图如下:
堆叠条形图.png
在绘制女性得分的条形图的时候,因为要堆叠在男性得分的条形图上,所以使用到了一个bottom参数,就是距离x轴的距离。通过对贴条形图,我们就可以清楚的知道,哪一个队伍的综合排名是最高的,并且在每个队伍中男女的得分情况。

条形图应用场景:

  1. 数量统计。
  2. 频率统计。

1417人已阅读,今天你学习了吗?

添加新回复
目录